Способы решения квадратных уравнений

Варианты решения квадратных уравнений


Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза.

В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения (Приложение 1).

Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Имеется десять способов решения квадратных уравнений. Подробно остановимся на каждом из них.

1 способ: разложение левой части уравнения на множители.

Решим уравнение

х2 + 10х - 24 = 0.

Разложим левую часть на множители:

х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).

Следовательно, уравнение можно переписать так:

(х + 12)(х - 2) = 0

Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10х - 24 = 0.


2 способ: метод выделения полного квадрата.

Решим уравнение х2 + 6х - 7 = 0.

Выделим в левой части полный квадрат.

Для этого запишем выражение х2 + 6х в следующем виде:

х2 + 6х = х2 + 2• х • 3.

В полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как х2 + 2• х • 3 + 32 = (х + 3)2.

Преобразуем теперь левую часть уравнения

х2 + 6х - 7 = 0,

прибавляя к ней и вычитая 32. Имеем:

х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16.

Таким образом, данное уравнение можно записать так:

(х + 3)2 - 16 =0, (х + 3)2 = 16.

Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х2 = -7.

3 способ: решение квадратных уравнений по формуле.

Умножим обе части уравнения

ах2 + bх + с = 0, а ≠ 0

на 4а и последовательно имеем:

4а2х2 + 4аbх + 4ас = 0,

((2ах)2 + 2ах • b + b2) - b2 + 4ac = 0,

(2ax + b)2 = b2 - 4ac,

2ax + b = ± √ b2 - 4ac,

2ax = - b ± √ b2 - 4ac,

Примеры. Сколько корней имеет уравнение?

а) 4х2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b2 - 4ac = 72 - 4 • 4 • 3 = 49 - 48 = 1,

D > 0, два разных корня;

Таким образом, в случае положительного дискриминанта, т.е. при

b2 - 4ac >0 , уравнение ах2 + bх + с = 0 имеет два различных корня.

б) 4х2 - 4х + 1 = 0,

а = 4, b = - 4, с = 1, D = b2 - 4ac = (-4)2 - 4 • 4 • 1= 16 - 16 = 0,

D = 0, один корень;

Итак, если дискриминант равен нулю, т.е. b2 - 4ac = 0, то уравнение

ах2 + bх + с = 0 имеет единственный корень,

в) 2х2 + 3х + 4 = 0,

а = 2, b = 3, с = 4, D = b2 - 4ac = 32 - 4 • 2 • 4 = 9 - 32 = - 13 , D < 0.

Данное уравнение корней не имеет.

Итак, если дискриминант отрицателен, т.е. b2 - 4ac < 0,

уравнение ах2 + bх + с = 0 не имеет корней.

Формула (1) корней квадратного уравнения ах2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент.

4 способ: решение уравнений с использованием теоремы Виета.


Как известно, приведенное квадратное уравнение имеет вид

х2 + px + c = 0. (1)

Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

x1 x2 = q,

x1 + x2 = - p

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если сводный член q приведенного уравнения (1) положителен (q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р > 0, то оба корня отрицательны, если р < 0, то оба корня положительны.

Например, x2 – 3x + 2 = 0; x1 = 2 иx2 = 1, так какq = 2 > 0 иp = - 3 < 0;

x2 + 8x + 7 = 0; x1 = - 7 иx2 = - 1, так какq = 7 > 0 иp= 8 > 0.

б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0), то имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .

Пример: x2 + 4x – 5 = 0; x1 = - 5 иx2 = 1, так какq= - 5 < 0 иp = 4 > 0;

x2 – 8x – 9 = 0; x1 = 9 иx2 = - 1, так какq = - 9 < 0 иp = - 8 < 0.

5 способ: решение уравнений способом «переброски»( Приложение 2).

Рассмотрим квадратное уравнение ах2 + bх + с = 0, где а ≠ 0.

Умножая обе его части на а, получаем уравнение

а2х2 + аbх + ас = 0.

Пусть ах = у, откуда х = у/а; тогда приходим к уравнению

у2 + by + ас = 0, равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета. Окончательно получаем х1 = у1/а и х1 = у2/а.

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Пример. Решим уравнение 2х2 – 11х + 15 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

у2 – 11у + 30 = 0.

Согласно теореме Виета

у1 = 5 х1 = 5/2 x1 = 2,5

у2 = 6 x2 = 6/2 x2 = 3.

Ответ: 2,5; 3.

6 способ: свойства коэффициентов квадратного уравнения (Приложение 2)

А.Пусть дано квадратное уравнение

ах2 + bх + с = 0, где а ≠ 0.

1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1

х2 = с/а.

Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

x2 + b/a x + c/a = 0.

Согласно теореме Виета

x1 + x2 = - b/a,

x1x2 = 1• c/a.

По условию а – b + с = 0, откуда b = а + с. Таким образом,

x1 + x2 = - а + b/a= -1 – c/a,

x1x2 = - 1• ( - c/a),

т.е. х1 = -1 и х2 = c/a, что м требовалось доказать.

Примеры.

1) Решим уравнение 345х2 – 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

х1 = 1, х2 = c/a = -208/345.

Ответ: 1; -208/345.

2)Решим уравнение 132х2 – 247х + 115 = 0.

Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

х1 = 1, х2 = c/a = 115/132.

Ответ: 1; 115/132.

Б. Если второй коэффициент b = 2k – четное число, то формулу корней.

Пример.

Решим уравнение 3х2 — 14х + 16 = 0.

Решение. Имеем: а = 3, b = — 14, с = 16, k = — 7;

D = k2 – ac = (- 7)2 – 3 • 16 = 49 – 48 = 1, D > 0, два различных корня;

Ответ: 2; 8/3

В. Приведенное уравнение х2 + рх + q= 0 совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней принимает вид:

Формулу (3) особенно удобно использовать, когда р — четное число.

Пример. Решим уравнение х2 – 14х – 15 = 0.

Решение. Имеем: х1,2 =7± 8,

Ответ: х1 = 15; х2 = -1.

7 способ: Графическое решение квадратного уравнения.

квадратное уравнение 8

Если в уравнении х2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х2 = - px - q.

Построим графики зависимости у = х2 и у = - px - q.


График первой зависимости - парабола, проходящая через начало координат. График второй зависимости - прямая (рис.1). Все данные вводим в программу«Advanced Grapher» и получаем ответы [13].

Искомая окружность пересекает ось абсцисс в точках B (х1 ;0) и D (х2 ;0), где х1 и х2 – корни уравнения ах2 + bх + с=0, и проходит через точки А (0;1) и С (0; ) на оси ординат. [5, c.34]

Возможны следующие случаи:

  • прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;
  • прямая и парабола могут касаться ( только одна общая точка), т.е. уравнение имеет одно решение;
  • прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

Примеры.

1) Решим графически уравнение х2 - 3х - 4 = 0 (рис. 2).

Решение. Запишем уравнение в виде х2 = 3х + 4.

Построим параболу у = х2 и прямую у = 3х + 4. Прямую у = 3х + 4 можно построить по двум точкам М (0; 4) и N (3; 13). Прямая и парабола пересекаются в двух точках А и В с абсциссами х1 = - 1 и х2 = 4.

Ответ: х1 = - 1; х2 = 4.

квадратное уравнение 9

2) Решим графически уравнение (рис. 3) х2 - 2х + 1 = 0.

Решение. Запишем уравнение в виде х2 = 2х - 1.

Построим параболу у = х2 и прямую у = 2х - 1.

Прямую у = 2х - 1 построим по двум точкам М (0; - 1)

и N(1/2; 0). Прямая и парабола пересекаются в точке А с

абсциссой х = 1. Ответ: х = 1.

квадратное уравнение 10

3) Решим графически уравнение х2 - 2х + 5 = 0 (рис. 4).

Решение. Запишем уравнение в виде х2 = 5х - 5. Построим параболу у = х2 и прямую у = 2х - 5. Прямую у = 2х - 5 построим по двум точкам М(0; - 5) и N(2,5; 0). Прямая и парабола не имеют точек пересечения, т.е. данное уравнение корней не имеет.

Ответ. Уравнение х2 - 2х + 5 = 0 корней не имеет.

8 способ:: решение квадратных уравнений с помощью циркуля и линейки.

квадратное уравнение 11

Графический способ решения квадратных уравнений с помощью параболы неудобен. Если строить параболу по точкам, то требуется много времени, и при этом степень точности получаемых результатов невелика. Найти корни квадратного уравнения ах2 + bх + с = 0 с помощью циркуля и линейки (рис. 5). [5, c.34]

Допустим, что искомая окружность пересекает ось абсцисс в точках В(х1; 0 ) и D (х2; 0), где х1 и х2 - корни уравнения ах2 + bх + с = 0, и проходит через точки А(0; 1) и С(0; c/a) на оси ординат. Тогда по теореме о секущих имеем OB • OD = OA • OC, откуда OC = OB • OD/ OA= х1х2/ 1 = c/a.

Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD.


Итак: 1) построим точки (центр окружности) и A(0; 1);

2) проведем окружность с радиусом SA;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2a), окружность пересекает ось Ох в двух точках (рис. 6,а) В(х1; 0) и D(х2; 0), где х1 и х2 - корни квадратного уравнения ах2 + bх + с = 0.

2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис. 6,б) в точке В(х1; 0), где х1 - корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра окружность не имеет общих точек с осью абсцисс (рис.6,в), в этом случае уравнение не имеет решения.

квадратное уравнение 12

квадратное уравнение 13

квадратное уравнение 14

Пример. Решим уравнение х2 - 2х - 3 = 0 (рис. 7).

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA, где А (0; 1).

квадратное уравнение 19

Ответ: х1 = - 1; х2 = 3.

9 способ: решение квадратных уравнений с помощью номограммы.

Это старый и незаслуженно забыты способ решения квадратных уравнений, помещенный на с.83 (см. Брадис В.М. Четырехзначные математические таблицы. - М., Просвещение, 1990) [ 3, c.83] .

Таблица XXII. Номограмма для решения уравнения z2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

квадратное уравнение 20

Криволинейная шкала номограммы построена по формулам (рис.11):

Полагая ОС = р, ED = q, ОЕ = а (все в см.), из подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение

z2 + pz + q = 0,

причем буква z означает метку любой точки криволинейной шкалы.


Примеры.

1) Для уравнения z2 - 9z + 8 = 0 номограмма дает корниz1 = 8,0 и z2 = 1,0 (рис.12).

квадратное уравнение 23

(рис.12)

2) Решим с помощью номограммы уравнение

2z2 - 9z + 2 = 0.

Разделим коэффициенты этого уравнения на 2, получим уравнение

z2 - 4,5z + 1 = 0.

Номограмма дает корни z1 = 4 иz2 = 0,5.

3) Для уравнения

z2 - 25z + 66 = 0

коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5t, получим уравнение t2 - 5t + 2,64 = 0, которое решаем посредством номограммы и получим t1 = 0,6 и t2 = 4,4, откудаz1 = 5t1 = 3,0 иz2 = 5t2 = 22,0.

10 способ: геометрический способ решения квадратных уравнений.

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал - Хорезми.

Примеры.

1) Решим уравнение х2 + 10х = 39.

В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.15).

Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

квадратное уравнение 24

Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х2, четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25), т.е. S = х2 + 10х + 25. Заменяя

х2 + 10х числом 39, получим, что S = 39 + 25 = 64, откуда следует, что сторона квадрата ABCD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим

А вот, например, как древние греки решали уравнение у2 + 6у - 16 = 0.

Решение представлено на рис. 16, где у2 + 6у = 16,

или у2 + 6у + 9 = 16 + 9.

Решение. Выражения у2 + 6у + 9 и 16 + 9 геометрически представляют собой один и тот же квадрат, а исходное уравнение у2 + 6у - 16 + 9 - 9 = 0 - одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = - 8 (рис.16).

квадратное уравнение 25

3) Решить геометрически уравнение у2 - 6у - 16 = 0.

Преобразуя уравнение, получаему2 - 6у = 16.

На рис. 17 находим «изображения» выражения у2 - 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3. Значит, если к выражению у2 - 6у прибавить 9, то получим площадь квадрата со стороной у - 3. Заменяя выражение у2 - 6у равным ему числом 16,

получаем: (у - 3)2 = 16 + 9, т.е. у - 3 = ± √25, или у - 3 = ± 5, где у1 = 8 и у2 = - 2.

квадратное уравнение 26

Заключение


Подводя итоги, можно сделать вывод: квадратные уравнения играют огромную роль в развитии математики. Не менее важно и то, что в результате применения квадратных уравнений при решении задач не редко обнаруживаются новые детали, удается сделать интересные обобщения и внести уточнения, которые подсказываются анализом полученных формул и соотношений.

Хочется отметить и то, что излагаемая тема в этой работе еще мало изучена, поэтому она таит в себе много скрытого и неизвестного, что дает прекрасную возможность для дальнейшей работы над ней. Здесь мы остановилась на вопросе решения квадратных уравнений, а что, если существуют и другие способы их решения?! Опять находить красивые закономерности, какие-то факты, уточнения, делать обобщения, открывать все новое и новое.

Но это вопросы уже следующих работ. В результате изучения новых способов решения квадратных уравнений мы получили возможность решать уравнения не только по формуле, но и более интересными способами. Решили множество уравнений, изучили программу «Advanced Grapher». Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три-четыре различные задачи.

Решая одну задачу различными методами, можно путем сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт. Данная исследовательская работа может быть использована учителями математики на уроках и элективных курсах по математике при изучении темы «Квадратные уравнения» (Приложения 1-3), учениками для расширения и углубления знаний по решению квадратных уравнений. Любой учащийся, используя эту исследовательскую работу, может самостоятельно изучить данную тему (Приложения 1-2).

Литература

  1. Алимов, Ш.А., Ильин В.А. и др. Алгебра, 6-8. / Пробный учебник для 6-8 классов средней школы. - М., Просвещение, 1981.
  2. Арутюнян, Е.Б.Занимательная математика/ Е.Б. Арутюнян Москва «Аст – пресс» 1999.
  3. Брадис, В.М. Четырехзначные математические таблицы для средней школы. Изд. 57-е. - М., Просвещение, 1990. С. 83.
  4. Глейзер, Г.И. История математики в школе. 7-8 классы. – М., Просвещение, 1982.
  5. Окунев , А.К. Квадратичные функции, уравнения и неравенства. / Пособие для учителя. - М., Просвещение, 1972.
  6. Пресман, А.А. Решение квадратного уравнения с помощью циркуля и линейки. - М., Квант, № 4/72. С. 34.
  7. Соломник , В.С., Милов П.И. Сборник вопросов и задач по математике. Изд. - 4-е, дополн. - М., Высшая школа, 1973.
  8. Худобин А.И. Сборник задач по алгебре и элементарным функциям. Пособие для учителя. Изд. 2-е. - М., Просвещение,
  9. Пичурин, Л.Ф. За страницами учебника алгебры/ Л.Ф. Пичурин. Москва «Просвещение» 1990г.
  10. Энциклопедический словарь юного математика. – 2-е издание, испр. и доп. – М.:Педагогика, 1989.
  11. Энциклопедия для детей. Т.11. Математика.- М.: Аванта+, 1999.
  12. Ресурсы сети Интернет.
  13. Программы «Advanced Grapher» и «Открытая математика».