Чётность и нечётность на шахматной доске
Чётность и нечётность
Число – одно из основных понятий математики, позволяющее выразить результаты счета или измерения. Со временем люди научились не только называть числа, но и обозначать их цифрами (условные знаки для обозначения чисел).
Цифры 2, 4, 6, 8 называются четными, а цифры 1, 3, 5, 7, 9 нечетными. Из признака делимости на 2 следует, что натуральные числа, которые делятся на 2, называются четными, остальные –нечетными.
На шахматной доске так же есть чётность и нечётность. Тут они связаны с номером хода.
При каждом ходе король меняет четность хода. Например, первый ход – нечётный, второй – чётный и т.д. Одновременно с этим король меняет цвет клетки, на которой он стоит. Чётность, нечётность на шахматной доске ещё раз подтверждают прямое отношение шахмат к математике.
Геометрия шахматной доски
Можно сказать, что ничего удивительного и интересного здесь нет. Можно подумать, что при виде шахматной доски мы сразу вспоминаем геометрию (из – за геометрической формы доски). Это, безусловно, так, но геометрическая форма ещё не всё.
Дело в том, что при игре в шахматы, как и в любой другой науке, есть свои определённые правила. И существует такое правило, как правило, квадрата. Квадратомназывается прямоугольник, у которого все стороны равны.
При этой композиции неопытные шахматисты рассуждают так: пешка идет сюда, король туда, пешка сюда, король туда и т.д. и при этом они часто путаются и, в конце концов,просчитываются.
Правило квадрата
Однако исход партии легко оценить при помощи «правила квадрата».
Достаточно выяснить, может ли король при своем ходе попасть в квадрат пешки. Итак, в нашей композиции черные при ходе делают ничью (попадают в квадрат), а при ходе противника проигрывают.
Шахматы и магические квадраты
Существует гипотеза отом,чтошахматыпроизошлиитакназываемых магическихквадратов.
Магический квадрат представляет собой квадратную таблицу nхn, заполненную целыми числами и обладающую следующим свойством: сумма чисел каждой строки, каждого столбца, а также двух главных диагоналей одна и та же. Для магических квадратов порядка 8 она равна 260. Закономерность расположения чисел в магических квадратах придает им волшебную силуискусства.
Рассмотрим одну из старинных дебютных табий (начальных расположений фигур) под названием Альмуджаннах. Она получается из современной расстановки при помощи следующих симметричных ходов белых и черных: 1. d3 d6 2. e3 e6 3. b3 b6 4.g3g65.c3c66.f3f67.c4c58.f4f59.Кc3Кc610.Кf3Кf611.Лb1Лb8.
Подсчитав сумму чисел, стоящих на восьми полях — d2, d3, e2, e3, d6, d7, e6, e7, участвующих в первые двух ходах, мы неожиданно получим магическое числе 260. Тот же результат даст и каждая последующая пара приведенных ходов. Подобные примеры и позволяют высказать гипотезу о связи магических квадратов с шахматами.